
Lisp in Summer Projects Submission

Submission Date 2013-10-04 15:57:28

Full Name Jaeden Amero

Country USA

Project Name A Random QSO Generator

Type of software other

General category library

LISP dialect Racket

GitHub URL https://github.com/Patater/qso-generator

Did you start this project? Yes, all the code is written by me

Project Description I want to describe my project in this form.

Purpose Existing Koch-method Morse code training software waits
until all symbols are learned before giving a Morse code
student practice with Morse code conversations (known
QSOs in amateur radio parlance). The point of this program
is to generate random QSOs given a subset of symbols, so
that the student can gain practice with the QSO format even
before they know all the Morse code symbols.

Function Using functions from this program, we can generate random
callsigns; word-level similar texts; letter-level similar texts;
texts that resemble the original, but are created with a
subset of the original alphabet; and random QSOs given
partial alphabets.

Motivation I wanted to learn Lisp. I heard Lisp was good at natural
language processing (NLP) tasks, so I decided to do a
project that involves NLP.

Audience I wrote this for myself, for later use as part of a Morse code
training program that uses the Koch method of learning.

Methodology The program works by following a set of production rules to
produce a random QSO.

A QSO usually contains the callsigns of those involved in
1

https://github.com/Patater/qso-generator


the QSO.The first thing the program does, when asked to
produce a random QSO via generate-random-qso, is
generate two callsigns, one for each participant in the
conversation.

Callsigns are generated according to another set of
production rules. They are made up of a country prefix, a
separating numeral, and a suffix. As best as can be done
given a partial alphabet, we attempt to create a callsign-
looking string according to rules imposed upon us by the
official callsign format.

After the callsigns are generated, we generate the body
(main text) of the QSO. We construct a hierarchical Markov
chain from our QSO corpus. The hierarchical Markov chain
is composed of a 2-word Markov chain, a 1-word Markov
chain, a 3-letter Markov chain, a 2-letter Markov chain, and a
1-letter Markov chain.

We use a hierarchical Markov chain so that if there is no
valid transition (i.e. a transition to a new state that remains
within our alphabet) at the highest level Markov chain, we
will fall back onto the lower level chain to see if there is a
valid transition there. If none of the chains have a valid
transition, we will select a random symbol from our alphabet
to be used to compose the next state. This allows us to
make a best effort to generate text that looks like a QSO
while remaining within our alphabet.

In order to combat repetitious looking output and to give
more exposure to all symbols within the alphabet (for the
sake of practice), we will, with a 20% chance, fall back to a
lower level chain, even when the higher level chain contains
a valid transition.

It is also possible for us to progress back up from a lower
level chain to a higher level chain. The program keeps track
of a history for each level of the hierarchical chain, no matter
which chain is actually used to transition to the next state.
The next time the hierarchical Markov chain is used, it
checks for valid transitions starting from the highest level
chain, which allows for getting back up into the higher order
chains.

The hierarchical Markov chain history is generated as
follows:
* For word-level chains when a word is generated:
The new history for the chain is the new word appended to
the previous history with the first word removed.
* For letter-level chains when a word is generated:
The new history for the chain is last n letters of the previous
history with all letters of the new word appended to it, where
n is the size of the previous history (which is only one state
back, no more).
* For word-level chains when a letter is generated:
The new history for the chain is the previous history with
the new letter appended to the last word of the previous
history. If the new letter is a space, then a new blank word
is appended to the previous history with the first word
removed.
* For letter-level chains when a letter is generated:
The new history for the chain is the new letter appended to
the previous history with the first letter removed.

2



After the hierarchical Markov chain is created, we the value
of generate-random-qso as a new string composed from
the introduction of the QSO, the main body of the QSO, and
the conclusion of the QSO.

Conclusion Letter substitutions would also help to create a more similar
text. For instance, instead of emitting a disallowed letter C,
we could allow a K where the C would have been used. The
issue with this is that the history and context information
would need to be maintained as if a C were actually emitted.
This sounds a bit tricky.

We have some structure to the QSO, but we could have
done better.
The generated text sounds like somebody schizophrenic
with very short term memory loss. They say, "GOOD COPY
EDWARD. MY NAME IS VICKY. MY NAME IS LARRY. HOW
COPY JOHNNY." messing up names so much. Markov
chains are famous for being bad at this sort of thing, so I
might have to help it out a bit similar to how how I helped
with the callsigns. To do this, I could use hierarchical Markov
chains not for the entire text, but for chunks, where the
chunks are approximately: "the radio I am using", "my
name", "you name", "where I live", "what the weather is like",
"how well I am copying you", "asking how I am being
copied".

I really liked describing my program as a set of production
rules. As a C programmer with experience using Bison, it
was a breath of fresh air to be have my main source code
resemble EBNF as opposed to only the source code
consumed by Bison resembling EBNF. It's nice to have the
ability to express the higher level ideas in the main language
of the program, instead of scattered about in various other
languages.

I made an attempt to make the Markov functions as general
as possible and not limited to just strings, but for the sake of
time I just implemented the hierarchical Markov chain history
code to work with lists that contain only strings. Everything
else was intended to be general enough to work with
heterogeneous lists

I started out writing unit tests for most of my functions, but
after I started creating functions that used variables from
their parent scope, I found it much more difficult to write
tests for everything. I also didn't like having to choose
between running the unit tests all the time in my main
program, and having to export internal-use-only functions for
my test program to use. There must be a better way to unit
test that I'm not yet aware of.

Build Instructions The program runs interactively with DrRacket, so all that
needs to be done is to press the run button in DrRacket.

Test Instructions Run any of the *-test.rkt files in DrRacket to test *.

Execution Instructions Here are some fun things you can do with it. Open "qso-
generate.rkt" and run it. Then run some of these commands.

Generate new, 20-word long, text in the style of the included
QSO corpus, using a typical word-level Markov-chain (size

3



QSO corpus, using a typical word-level Markov-chain (size
2).

(display (string-join (generate-similar-corpus 2 (string-split
(file->string
"corpora/qso.txt") " ") 20) " "))

Generate new text in the style of three different texts using
a typical word-level Markov-chain (size 2).

(display (string-join (generate-similar-corpus 2 (string-split
(string-append
(file->string "corpora/navy-seal-copypasta.txt") (file->string
"corpora/dont-copy-that-floppy.txt") (file->string
"corpora/bel-air.txt")) " ")
200) " "))

Generate a line that is similar to any line from a text file, but
without using the letter E or e, using hierarchical Markov
chains.

(display (generate-random-text
(build-hierarchical-markov-chain-from-file "corpora/king-
lear.txt")
'(#A #B #C #D #F #G #H #I #J #K #L #M #N #O #P #Q #R
#S #T
#U #V #W #X #Y #Z #a #b #c #d #f #g #h #i #j #k #l #m #n
#o #p #q #r #s #t #u #v #w #x #y #z #. #, #' #; #? #!
#space)
200
))

Aside from all those other fun things, here's the main point
of this program. Generate a random QSO-like message with
a few differently sized alphabets. The alphabets are in
N1IRZ's learning order.

(display (generate-random-qso '(#K #M)))

(display (generate-random-qso '(#K #M #R #S #U #A #P #T
#L #O)))

(display (generate-random-qso '(#K #M #R #S #U #A #P #T
#L #O #W #I
#. #N #J #E #F # #Y #V)))

(display (generate-random-qso '(#K #M #R #S #U #A #P #T
#L #O #W #I
#. #N #J #E #F # #Y #V #, #G #5 #/ #Q #9 #Z #H #3 #8)))

(display (generate-random-qso '(#K #M #R #S #U #A #P #T
#L #O #W #I
#. #N #J #E #F # #Y #V #, #G #5 #/ #Q #9 #Z #H #3 #8 #B
#?
#4 #2 #7 #C #1 #D #6 #X)))

(display (generate-random-qso '(#K #M #R #S #U #A #P #T
#L #O #W #I
#. #N #J #E #F # #Y #V #, #G #5 #/ #Q #9 #Z #H #3 #8 #B
#?
#4 #2 #7 #C #1 #D #6 #X ## #@ #! #$)))

Describe any bugs or caveats The random initial transition list, that decided which word to
start with, might only be using the first word of the last

4



example QSO in qso.txt. This is fixed in a newer version of
the program, too new to be included in Lisp in Summer
Projects.

Screen shots

qso-generator.png

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

5

http://www.jotform.us/uploads/gadmin/32729091727157/246725848032713993/qso-generator.png

