
Lisp in Summer Projects Submission

Submission Date 2013-10-24 16:14:52

Full Name Zach Kost-Smith

Country USA

Project Name CLANN

Type of software library

General category library

LISP dialect Commmon Lisp

GitHub URL https://github.com/smithzvk/clann

Did you start this project? Yes, all the code is written by me

Project Description I want to describe my project in this form.

Purpose To provide a flexible yet efficient framework for developing
and using artificial neural networks in Common Lisp. The
primary intent is machine learning.

Function This project allows you to build simple feed forward
networks (with options of a few different activation
functions). It also provides an implementation of the back-
propagation learning algorithm for these simple feed forward
networks. The end goal was to provide efficient BLAS and
CUDA implementations, but this didn't come to fruition.

Motivation Machine learning is an extremely interesting subject, but try
as I might, I cannot find a good NN implementation for CL.
The closest I have found is CL-FANN, which is quite limited
(though not as limited as this library in its current state).

Audience I wrote this for people interested in machine learning and
artificial intelligence while also wanting to study these topics
from inside a REPL.

1

https://github.com/smithzvk/clann


Methodology The work here is based on implementations of neural
networks from Geoffry Hinton's class on Neural Networks
and Andrew Ng's class on Machine Learning. In principle,
this is only a library that aids in multiplying matrices and
vectors, then mapping the vectors with an activation
function. From this point of view, NN computation (and
training) is merely a layer of abstraction over a linear
algebra library such as BLAS, cuBLAS, or AAPML.

The programming method was based on first building a
reference implementation (that runs entirely within Lisp) that
can be used to validate the lower level code that will likely be
based in C or some kind of GPU DSL. In it's current version,
only a partial implementation of the reference
implementation is complete.

Each neural network is represented as a list of layers. Each
layer is a list containing a transition matrix (which maps the
outputs of the previous layer (plus a bias input) to the
inputs of the current layer), a bias vector, and a vector of
activation functions.

All of the computation for this project is basically matrix-
matrix multiplication and mapping functions over the
resulting matrix. The matrix manipulation is implemented
using my Index-mapped-arrays library, which provides a
uniform interface over indexable data structures in Lisp.

Some effort was made to write CLANN in a literate
programming style. The method I use is one of my own
devising that I call Literate-Lisp. This is a simple system
where you place any literate documentation in your
programs comments (annotated by a leading "@" to tell the
parser to switch to literate documentation mode). See
https://github.com/smithzvk/literate-lisp This is not a
necessary requirement to compile, load, or run the program.

Conclusion In the end the reference implementation seems to work
somewhat for some very simple tasks, such as
implementing a NOT or OR gate as a neural network. The
reference implementation is very slow, and is likely not
correct as it has not been fully verified.

Finally, when I stopped work on this in mid July (when I
determined that writing my thesis was drastically more
important), I was resigned to not submitting anything. Your
friendly email has persuaded me otherwise. I would very
much like to be a part of Lisp community, even if my
accomplishments are of poor quality right now. I hope you do
this again next year.

Build Instructions If you have quicklisp installed in ~/quicklisp, it will install
Iterate. You also need my Index-mapped-arrays library.

Type "make" from the cloned CLANN directory to have it
clone index-mapped-arrays into your local-projects folder.

Test Instructions No automated test suite.

Execution Instructions You may work through the examples in examples.lisp.
Hopefully this will provide enough info of how to use this.

Make a network: (make-network '(n-inputs hidden-layer1 ...
2



Make a network: (make-network '(n-inputs hidden-layer1 ...
hidden-layer-n n-outputs))

Predict: (predict input(s) *net*)

Train: (gradient-descent inputs *net* expected-outputs)

Describe any bugs or caveats The biggest bug is that this was not left in a build-able state
at the time of the contest deadline.

To see what work was done at the time of the contest end
see the master branch.

To see a version that works (a few minor bug-fixes to get it
to working status, and adding Makefile and examples.lisp)
see the LISP-submission branch. I understand that this is
not within the rules, but I figured it is better to give people
code that actually runs than just a mess.

Official I have read rules and have abided by them.
I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

3


