Lisp in Summer Projects Submission

Submission Date

Full Name

Country

Project Name

Type of software

General category

LISP dialect

GitHub URL

Did you start this project?
Project Description

Purpose

Function

2013-10-23 17:55:29

Janne Nykopp

Finland
Notewhacker
gui app

game
Commmon Lisp

https//github.com/jnykopp/notewhacker

Yes, all the code is written by me
| want to describe my project in this form.

Notewhacker is a game for learning to read sheet music:
Random notes

or chords scroll on the game screen. The player has to hit
the

corresponding keys (or buttons etc.) of the instrument.

Duration and rhythm are ignored. Emphasis is on muscle
memory,
learning note names is not needed.

The game displays a staff and randomized chords of notes,
generated at

certain intervals. Chords scroll from right to left with leftmost
chord being a target chord.

The game also reads MIDI data from an instrument. When
notes for the

target chord are played, player gets points, scrolling speed
increases, and the target chord is removed. Wrong notes
are

displayed with red note markers.

When a chord scrolls off the staff, a life is lost and scrolling
1


https://github.com/jnykopp/notewhacker

Motivation

Audience

Methodology

speed

halves. When all lives are gone, score is shown, and player
is offered

a restart.

| play accordion. Most accordions have a bass system —
Stradella

bass — which is quite different from other instruments.
Existing

games similar to Notewhacker do not support Stradella
bass.

Also, combining MIDI accordion and Common Lisp together
was fun!

This game is created for anyone who wants to learn to read
sheet music

and has a MIDI instrument. It is especially created for
accordion

players, as in future there will be an option for special
handling of

Stradella bass.

* Graphics

The game uses OpenGL for graphics. Each string, number,
notehead,

clef, and accidental is a textured quad. Vecto is used to
render

TrueType fonts into textures. Visual elements are drawn as
a

collection of GL-quads and lines.

| first tried to use Lispbuilder-sdl's surfaces but couldn't get
alpha

blending to work properly, and changed to OpenGL. Using
effects,

e.g. rotating, scaling, color change, and fading seems to be
easier

with OpenGL.

Graphics are designed to scale with the window size,
though

implementation's not ready yet. All coordinates (except the
last-minute code) are defined as multiples of note head
width and

height, and textures can be scaled thanks to TrueType
fonts. I'm

planning on using Reactive Programming by http://common-
lisp.net/project/cells/ library for propagating values.

* Midi

Midi part is Unix-specific at the moment. OSS Midi device is
opened

for reading. There is a separate thread which reads the
device

perpetually and fills a ring buffer with read octets.

Reading is asynchronous so the reading thread can be
stopped at any

time. Common Lisp standard doesn't offer asynchronous I/O.
Notewhacker

2



Conclusion

now only works with SBCL and CCL, which have
implementation specific

asynchronous I/O (i.e. read-byte with short timeout). Other
Common

Lisp implementations may offer similar interfaces. They
aren't yet

supported.

This approach seems more straightforward than using
asynchronous /O
libraries which require system level C-libraries.

* Sheet music typesetting

Chords can be drawn in different key signatures and for G
and F

clefs. For key signatures, each staff has a table for mapping
Midi key

number modulo octave to a choice of positions, as a pitch
can

sometimes be drawn in two ways: e.g. key 68 can be drawn
as G#4 or

Ab4. The clef and key signature can be changed on the fly
so that only

chords created after the change will be drawn relative to the
new clef

or key signature. This allows exercises on changing key
signature, for

example.

Typesetting works a chord at a time. The algorithm takes
the set of

Midi key numbers (generated targets or midi data) and staff,
and

outputs a list of drawing commands to display the chord,
including

accidentals, ledger lines etc. Noteheads and accidentals
very close to

each other are drawn so that they won't overlay each other,
i.e. upside down or translated on x-axis.

* Engine

Lispbuilder-sdl is used for event handling, game window
management
etc.

The game is playable and it works well. It can already be
used to
practice notes in G-clef with C-major key.

Unfortunately | couldn't devote much time to this project so
many

things are unfinished. With little effort, changing key
signature can

be implemented. Most of the code for this is there already.

Second staff line with F-clef is also something that | will
implement

specifically to get the Stradella bass part covered. Good
amount of

this work is also done already.



Build Instructions

Test Instructions

Execution Instructions

Describe any bugs or caveats

Target notes are now completely random. | plan on a system
with chords

being created according to e.g. scales. Notes where player
makes often

mistakes should be emphasized.

Window resizing is not implemented at all. T his is something
| want to

try and write with the Cells library. Also | will create a menu
system

which can be operated with the Midi instrument. These
require more

work.

Also usability should be improved. User shouldn't be
required to

modify the code to define the midi device. The game could
detect the

right device or offer the user to enter it upon startup.

Easiest is to use quicklisp. Download the code of this
project
(https://github.com/jnykopp/notewhacker/archive/master.zip)
and move

the extracted directory "notewhacker-master” to quicklisp's
local projects

directory with name "notewhacker". Then load the project
using quicklisp: (ql:quickload "notewhacker").

The test cases can be run after building by following
commands:

(5amirun! 'notewhacker::raw-buffer-tests)
(5amirun! 'notewhacker::matcher-tests)
(5amirun! 'notewhacker::midi-tests)

Before starting the program, make a change to file midi.lisp.
Change the row
(defparameter *midi-device-pathname* #p"/dev/midil"

to point to your midi device file. Then recompile the
defparameter or
re-quickload by (gl:quickload "notewhacker").

Start the game from REPL with command
(notewhacker:main).

If the midi device file is missing, the midi reader thread will
throw
an exception which is uncaught.

On some graphics cards all of the textures have a thin
transparent

line going across them. This happens e.g. on Nvidia Quadro
NVS

4200M. T he software was developed using Intel HD4000
graphics card,

which doesn’t expose this bug.



Screen shots Score: 1530 Lives: 2
Combo: 0 Hits/misses: 14/5

£ I+I .
o
= #g J
notewhacker2.png
Official I have read rules and have abided by them.

I am 18 years of age or older.
I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

Text


http://www.jotform.us/uploads/gadmin/32729091727157/248374529751407997/notewhacker2.png
Heow Goodman

Text


