Lisp in Summer Projects Submission

Submission Date

Full Name

Country

Project Name

Type of software

General category

LISP dialect

GitHub URL

Did you start this project?
Project Description

Upload 3-4 page detailed PDF

Build Instructions

Test Instructions
Execution Instructions

Describe any bugs or caveats

Screen shots

Official

2013-10-15 07:06:30

Jonas Enlund

Finland
CLJSFiddle

web app
development tool
Clojure

https://github.com/jonase/cljsfiddle/treellisp

Yes, all the code is written by me
| want to upload a free-form 3-4 page PDF composition.

cljisfiddle.pdf

Follow the instructions at
https://github.com/jonase/cljsfiddle/tree/lis p#local-install

There are no tests
When the server has started, visit http://localhost:8080

The application will not run on old browsers. | have tested it
on Chrome and Firefox 25 (Note, Firefox 24 will not work). It
should also work with recent versions of Safari (as reported
by users).

cljsfiddle.png

I have read rules and have abided by them.

| am 18 years of age or older.

I am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.

https://github.com/jonase/cljsfiddle/tree/lisp
http://www.jotform.us/uploads/gadmin/32729091727157/247644390001961117/cljsfiddle.pdf
http://www.jotform.us/uploads/gadmin/32729091727157/247644390001961117/cljsfiddle.png

CLJSFiddle

http://cljsfiddle.net

Overview

CLJSFiddle (short for “ClojureScript Fiddle”) is a ClojureScript' playground web application
similar to JSFiddle? and JSBin®. The application lets people write, execute, save and share
ClojureScript programs without leaving their web browser. These kinds of live-coding and
sharing services have proved valuable to the Javascript front end developer community. The
ClojureScript community deserves a similar service.

The target audience is the entire ClojureScript community. New users can go to the site and
write their first ClojureScript program, while experienced ClojureScript developers can use the
web app for exploratory coding sessions and as a platform to teach and help new users. The
web application can also be used for live coding and demos at conferences and other developer
events.

A fiddle consists of three pieces of user-written source code: ClojureScript, CSS and HTML. The
user interface is split in half. The left half has a tabbed pane where the code is written, and the
right has a large area where the HTML output of the written program will be displayed.

CLJSFiddle | Run Save My namespaces About

clis html csS

ns jonase.bezier
:require
;3 NOTE:) _
;3 cljsfiddle.net/fiddle/jonase.canvas-helpers
jonase.canvas-helpers :as c
domina :refer [by-id

def pl [4 100
def p2 [100 4
def p3 [200 196
def p4 [296 40

doto (.getContext (by-id "bg") "2d"
c/draw-lines pl p2 p3 p4
c/draw-points [pl p2 p3 p4] 3 "black"

def ctx (.getContext (by-id "anim") "2d"

In order to save fiddles users must log in via their GitHub* account. This is required because

' https://qithub.com/clojure/clojurescript
2 http://isfiddle.net/

3 http://jsbin.com/
4 https://qithub.com/

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fclojure%2Fclojurescript&sa=D&sntz=1&usg=AFQjCNG5FWXgQFOLt9YirFevUBF_0Ke5lg
http://www.google.com/url?q=http%3A%2F%2Fjsfiddle.net%2F&sa=D&sntz=1&usg=AFQjCNFXcw5hBaaTey04V8VeXABWW_jDkw
http://www.google.com/url?q=http%3A%2F%2Fjsbin.com%2F&sa=D&sntz=1&usg=AFQjCNHPQ1G-4MzwMW4t1Kh2raBdq6xh9Q
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2F&sa=D&sntz=1&usg=AFQjCNHReqsuKT6C86HcgL4TbSevF24rxQ

CLJSFiddle leverages the Clojure namespace system to give meaningful names to fiddles.

This enforcement enables a strict naming scheme where a namespace must start with the
users GitHub name. Apart from the fact that users can’t overwrite the work of others (and that it
generates nice looking and memorable urls), there is an opportunity for features not available in
other similar services: Code reuse across the entire CLJSFiddle code base.

For example, the fiddle jonase.bezier’ uses code from jonase.canvas-helpers® simply by
including it in the namespace declaration:

(ns jonase.bezier
(:require [jonase.canvas-helpers :as c] ...))

Motivation

| was inspired to create this project because it seemed like both a much-needed service and a
relatively challenging project:

e Unlike Javascript, ClojureScript must be compiled before executed on a Javascript
runtime.

e ClojureScript is not only a compiler, but also a collection of core libraries (e.g. the
immutable collections and the sequence library) as well as the google-closure’ library. In
addition, there are a lot of useful user contributed libraries such as core.async®,
core.logic®, domina'®, and so forth.

e Clojure programmers are used to interactive and exploratory coding sessions. How can
the compilation and delivery of (the possibly huge) libraries be done in a performant
enough manner? It is an important objective of CLJSFiddle to retain interactive
development in a browser environment.

e How can permalinks be provided when namespaces are used to name fiddles (which
can be modified at any time)? How can compiler and library updates be handled without
breaking permalinks?

These were the questions that motivated me to create this project.

5 http://clisfiddle.net/fiddle/jonase.bezier

8 http://clisfiddle.net/fiddle/jonase.canvas-helpers
7 https://developers.google.com/closure/

8 https://aithub.com/clojure/core.async

® https://github.com/clojure/core.logic

10 https://github.com/levand/domina

http://www.google.com/url?q=http%3A%2F%2Fcljsfiddle.net%2Ffiddle%2Fjonase.bezier&sa=D&sntz=1&usg=AFQjCNEVdnM15Yh2gEZPa9l7xgfLkoHG_w
http://www.google.com/url?q=http%3A%2F%2Fcljsfiddle.net%2Ffiddle%2Fjonase.bezier&sa=D&sntz=1&usg=AFQjCNEVdnM15Yh2gEZPa9l7xgfLkoHG_w
https://developers.google.com/closure/
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fclojure%2Fcore.async&sa=D&sntz=1&usg=AFQjCNENDOucAQ-rmqqwiYXL92bdc7DsTA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fclojure%2Fcore.logic&sa=D&sntz=1&usg=AFQjCNHydOXYVZl53PZJadINpERhACJUgg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Flevand%2Fdomina&sa=D&sntz=1&usg=AFQjCNGt_nAwneAxPHDCdbFjrpCM4c58LQ

Methodology

CLJSFiddle uses ClojureScript on the client and Clojure on the server. The Datomic'’ database
is used for storage.

The Client

The client side of the application is pretty straight forward. CodeMirror'? is used as the code
editor and the resulting program is run in a sandboxed HTMLS5 iframe. ClojureScript code is
sent to the server for compilation. The result of compilation is a Javascript program as well as a

list of files the program depends on. The dependency files and Javascript string are put into
script tags and bundled together with the HTML and CSS to produce the final output HTML page,
which is then added to the iframe’s srctag attribute. At this point the result is shown to the user.

The Server

When developing locally, developers use tools like git to manage the history and versioning of
their programs. CLJSFiddle also needs to keep all of the history in order to support permalinks.
Datomic is a database that accumulates information, and the past is always accessible. Queries
are performed against an immutable view of the database at a specific point in time. This turns
out to be an excellent match for CLJSFiddle. In CLJSFiddle everything is stored in Datomic. This
includes all user-saved fiddles, the ClojureScript standard libraries and some of the most
popular user contributed libraries. In addition, the entire Google Closure library is stored in
Datomic.

When a new version of ClojureScript, Google Closure, or some other library is released an
import script (written in Clojure) can be run which figures out which files has changed relative to
the current state of the database and transacts new or updated files into the database. History is
preserved so if a fiddle depends on some old library code, any permalinks to that fiddle are
unaffected by the update.

Fiddles are treated the same way as library code: when a user saves a fiddle, the system figures
out which files have actually changed and only it transacts changes into storage. This means
that library code and fiddles are stored side by side which simplifies dependency resolution.

" http://www.datomic.com/
12 http://codemirror.net/
'3 http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

http://www.google.com/url?q=http%3A%2F%2Fwww.datomic.com%2F&sa=D&sntz=1&usg=AFQjCNFZslVSi-KujKMqXk9CXy4G3CpFPw
http://www.google.com/url?q=http%3A%2F%2Fcodemirror.net%2F&sa=D&sntz=1&usg=AFQjCNH1oGoVNYIiR6uMOrtvCddB-0LmiA
http://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/

Dependency Resolution

When ClojureScript source code arrives from the client in order to be compiled by the

ClojureScript compiler, it is not enough to simply compile the file and send the Javascript source

code back to the client. The generated Javascript will most likely depend on several libraries with
their own set of dependencies and maybe even other fiddles. In addition, the client may have
requested a permalink which means that the dependency resolution will have to be done against
some previous state of the system.

Datomic provides all the features to solve these problems. The program grabs the value of the
database at the point in time requested by the client. A ClojureScript source transaction is built
and temporarily added to the database. The dependencies are calculated with a simple
topological sort algorithm via depth-first search (against the immutable database value) starting
with the namespace of the user-supplied source. The result is a sequence of namespaces in

dependency order. The SHA-values of the source code corresponding to the namespaces are
sent back to the client. The client will use these SHA values to request the actual Javascript in
separate requests.

Performance

The obvious performance bottleneck from the user’s perspective is the fetching of all the
Javascript dependencies. This can be mitigated with client-side HTTP caching. Since the client
doesn’t get the dependencies as a list of namespaces but instead as a list of SHA-values, the
system can cache all the dependencies on the client. The first time the user runs a program on
CLJSFiddle it will feel pretty slow as it will probably have to fetch large portions of the
ClojureScript core library as well as a few Google Closure libraries. The next time the user runs
a fiddle (after some edit to the source) only one round trip to the server is needed in order to
compile that single file.

When a new version of a library or a fiddle is added to storage it will be assigned a new SHA

which will be sent to the client upon request.

Conclusion

The web application has been up and running since late September, and it appears to work as
expected. There are many opportunities for enhancements which | will explore in the coming
months:

e The user interface design in particular is somewhat lacking. Line numbers from error
messages could be used to highlight the offending code. Structural editing support (i.e.

paredit) should be implemented for the CodeMirror code editor.

e The extensive permalink support is not exposed enough in the Ul, it's only mentioned in
the ‘about’ pages.

e A read-eval-print-loop (REPL) could be supported either via a separate console or
provided as keyword shortcuts that first send expressions to the server for compilation

and the resulting Javascript to the iframe for evaluation.
e Support more browsers. The client uses relatively new features of the HTML5 spec

which means the site will not run correctly on older browsers.

In conclusion, I'm really happy with how the system turned out. The edit/compile/run cycle is at
least as fast as local development which was a primary goal of mine. It has been well received
by the ClojureScript community and | look forward maintain and enhance the system in the
future. The use of Datomic and the rest of the Clojure stack has been an absolute pleasure to

work with as usual.

Jonas Enlund
October, 2013

