Lisp in Summer Projects Submission

Submission Date

Full Name

Country

Project Name

Type of software

General category

LISP dialect

GitHub URL

Did you start this project?
Project Description

Purpose

Function

Motivation

2013-10-01 15:49:23

Thomas Greve Kristensen

United Kingdom
Propaganda
library

library

Clojure

https://github.com/tgk/propaganda

Yes, all the code is written by me
| want to describe my project in this form.

This Clojure library is an implementation of the propagator
computational model proposed by Gerald Jay Sussman and
Alexey Radul in the paper "The Art of the Propagator”. This
implementation extends upon the original work, as it
contains not only an implementation of the original concepts,
but also an implementation which does not rely on
synchronisation mechanisms on the runtime platform,
allowing it to run on the JVM as well as in an internet
browser.

Using the library, programmers can express their problem
domain in a style similar to, but often simpler than, logic
programming. Constraints and values are added to a
system representing the problem domain. As more and more
information is added to the system, values in the system
become more precise. Information flows back and forth,
allowing seemingly un-coupled values in the system to be
refined automatically.

There has been an industrial paradigm switch from object

oriented programming towards functional style programming,
especially with the advance of Clojure and Racket. On top of
these, declarative programming has had a revival, especially

1


https://github.com/tgk/propaganda

Audience

Methodology

Conclusion

through cKanren and core.logic. Propagators represent a
novel method of declarative programming that, for some
problems, is easier to describe than logic programming. Until
now, propagators have only been available in scheme. With
the implementation of this library, propagators will be
available through Clojure, and therefore available to run on
the JVM and in internet browsers.

The audience is Clojure programmers with an interest in
declarative programming.

Propagators represent an interesting computational model in which
cells hold on to values. The values are updated by propagators.

A cell is much like a variable, in that it holds on to a value over time.
Initially, all cells have no value, but as the program runs, cells can take
on values when instructed to do so, either directly by the programmer
or by propagators.

Propagators attach themselves to one or more cells. Whenever the
value of a cell is changed, the propagator is informed, and it can then
choose to take some form of action, typically updating other cells.

Propagation can happen in both directions: if we specify a propagator
ensuring cell B is the square of cell A, and a propagator ensuring cell
Ais the square-root of cell B, we can derive cell B from cell Aor cell A
from B, depending on what information is available.

As a part of the project, | have created a short illustration of these
concepts. It can be found at http://tgk.github.io/propaganda/.

The original implementation of propagators used scheme variables
and coordination mechanisms to propagate values through cells. This
translated fairly well to Clojure, where cell values could be kept in refs
that were updates in dosync statements. When values need to be
merged, a globally bound "merge" function is used, as proposed in
the original paper.

Not all of these STM mechanism are available in ClojureScript, and a
second strategy is therefore included in the library. This strategy uses
an immutable map representing the system which can be extended
with constraints and values. Such as system contains a "merge"
function, that is no longer globally bound, and can very from system to
system.

https://github.com/tgk/propaganda/blob/master/doc/stm_vs_system.md

The original implementation used an implementation of generic
operators available in scheme. This was not available in Clojure, and
this library therefore contains an implementation of generic operators.
The enclosed implementation of generic operator designed for this
library, but is generally usable.

A goal of the library was to be extensible. Using the generic operator
implementation it is possible to extend the propagator model with new
datatypes. As a part of this project, a tutorial briefly outlining how to
extend the library with support for sets has been made available at;

https://github.com/tgk/propaganda/blob/master/doc/set_datatype.md

The library contains a complete implementation of the
propagator strategy outlined in the original paper.
Furthermore, it extends the propagator concept to also be

2



Build Instructions

Test Instructions

Execution Instructions

Describe any bugs or caveats

usable on a system with weaker STM mechanisms than
those found in the scheme runtime. The library is usable
from both Clojure and ClojureScript, making it possible to run
declarative programs utilising the library both on the JVM
and in ClojureScript.

The original article went into the illustration of some
examples that have not been covered in the example
section of the project. One of these is the maintenance of
multiple conflicting world views, which in the original article
were used to express an algorithm for solving Dinesman's
multiple-dwelling problem. This requires a quite complicated
algorithm to be implemented. The immutable datastructure
solution referenced earlier makes it possible to retain old
systems, and therefore effectively maintain conflicting world
views to solve the multiple-dwelling problem. Doing so would
be interesting project. It would not require any extension to
the library as it is now, but it would simple be an application
of it.

As the library is extensible with new datatypes in cells, it
would be interesting to see it being used with datastructures
available from the target platform, such as classes
representing dates and date ranges.

The library can be built with the commands

lein deps
lein uberjar

The resulting jar file contains an implementation that can be
used from both Clojure and ClojureScript.

Invoking
lein test

will run all the automated tests. Apart from these, the
"example" folder contains instructive examples of how the
library can be used.

The library can be included as a maven or leinigen
dependency, as described in the README. The "examples"
folder contains examples that can be executed from either
the REPL started in the project with "lein repl".

The following repository contains a complete example for
setting up an example in the browser:

https://github.com/tgk/cljs-propaganda-example

No known bugs.

The caveat of declarative programming models in general is
that it can be difficult to reason about how results are
arrived at. Although the library supports some help in the
form of what is called "supported values", it can still be fairly
difficult to reason about for users not used to declarative
programming.



Screen shots

CALM

AND

PROPAGATE
ON

propaganda.png

Official I have read rules and have abided by them.
| am 18 years of age or older.
| am not living in Brazil, Quebec, Saudi Arabia, Cuba, Iran,
Myanmar (Burma), North Korea, Sudan, or Syria.


http://www.jotform.us/uploads/gadmin/32729091727157/246466163531377696/propaganda.png

